Crosstalk of EGFR signalling with Notch and Hippo pathways to regulate cell specification, migration and proliferation in cockroach panoistic ovaries.
نویسندگان
چکیده
BACKGROUND INFORMATION Epidermal growth factor receptor (EGFR) signalling is crucial for the regulation of multiple developmental processes. Its function in relation to insect oogenesis has been thoroughly studied in the fly Drosophila melanogaster, which possesses ovaries of the highly modified meroistic type. Conversely, studies in other insect species with different ovary types are scarce. We have studied EGFR functions in the oogenesis of the cockroach Blattella germanica, a phylogenetically basal insect with panoistic ovaries. RESULTS In this cockroach, depletion of EGFR expression aborts oocyte maturation and prevents oviposition, as affects the distribution of F-actins in the follicular cells of the basal ovarian follicle, which triggers premature apoptosis. In the younger ovarian follicles within the ovariole, depletion of EGFR expression reduces the number of follicular cells, possibly because the Hippo pathway is altered; moreover, the concomitant reduction of Notch expression results in the absence of stalk. Finally, depletion of EGFR determines an increase in the number of germinal cells. CONCLUSIONS In the panoistic ovary of B. germanica, EGFR plays a role in the control of cell proliferation through interaction with Hippo and Notch pathways.
منابع مشابه
Unlike in Drosophila Meroistic Ovaries, Hippo Represses Notch in Blattella germanica Panoistic Ovaries, Triggering the Mitosis-Endocycle Switch in the Follicular Cells
During insect oogenesis, the follicular epithelium undergoes both cell proliferation and apoptosis, thus modulating ovarian follicle growth. The Hippo pathway is key in these processes, and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster. However, nothing is known about the role of the Hippo pathway in primitive panoistic ovaries. This work examines the mRNA expr...
متن کاملThe Hippo Pathway Promotes Notch Signaling in Regulation of Cell Differentiation, Proliferation, and Oocyte Polarity
Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly i...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملCell proliferation control by Notch signalling during imaginal discs development in Drosophila
The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling c...
متن کاملCombinatorial signaling in the specification of primary pigment cells in the Drosophila eye.
In the developing eye of Drosophila, the EGFR and Notch pathways integrate in a sequential, followed by a combinatorial, manner in the specification of cone-cell fate. Here, we demonstrate that the specification of primary pigment cells requires the reiterative use of the sequential integration between the EGFR and Notch pathways to regulate the spatiotemporal expression of Delta in pupal cone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology of the cell
دوره 107 8 شماره
صفحات -
تاریخ انتشار 2015